Lecture notes for Abstract Algebra I: Lecture 19

1 Rings homomorphisms and ideals

In the study of groups, a homomorphism is a map that preserves the operation of the
group. Similarly, a homomorphism between rings preserves the operations of addition
and multiplication in the ring. More specifically, if R and S are rings, then a ring
homomorphism is a map ¢: R — S satisfying

pla+b)=wp(a)+e®d) and  pa-b) =p(a)- p(b)

for all a,b € R. If p: R — S is a one-to-one and onto homomorphism, then ¢ is
called an isomorphism of rings. The set of elements that a ring homomorphism
maps to 0 plays a fundamental role in the theory of rings. For any ring homomorphism
p: R — S, we define the kernel of a ring homomorphism to be the set

kerp = {r € R|¢(r) =0}

Example 1. For any integer n we can define a ring homomorphism ¢: Z — Z,, by
a — a(modn). This is indeed a ring homomorphism, since

w(a+b) = (a+ b)(modn)
a(modn) + b(mod n)

= ¢(a) + ¢(b)

and

¢(a-b) = (a-b)(modn)
= a(mod n) - b(mod n)

= ¢(a) - p(b)
The kernel of p: Z — Z,, is ker(¢) = nZ.
Proposition 2. Let p: R — S be a ring homomorphism.
1. If R is a commutative ring, then p(R) is a commutative ring.
2. ¢(0) =0.

3. Let 1g and 1g be the identities for R and S, respectively. If ¢ is onto, then
QO(lR) = 15.

4. If R is a field and o(R) # 0, then ¢(R) is a field as well.



In group theory we found that normal subgroups play a special role. These subgroups
have nice characteristics that make them more interesting to study than arbitrary
subgroups. In ring theory the objects corresponding to normal subgroups are a special
class of subrings called ideals.

Definition 3. An ideal in a ring R is a subring [ of R such that if a is in [ and r
is in R, then both ar and ra are in [; that is, v/ C I and Ir C [ for all r € R.

lideal & r—sel Vr,sel and ar,rac€l VYacl,reR.

Remark 4. Given a ring homomorphism ¢: R — S, the kernel ker(p) is an ideal
of R. We can check

(1) 2,y € ker(p) = ¢(x), ¢(y) = 0= p(r—y) = p(x) —p(y) = 0 = z—y € ker(p).
(2) x € ker(p),r € R= p(rz) = o(r)p(z) = ¢(r) -0 =0 = rx € ker(yp).
(2) x € ker(p), 7 € R= p(ar) = p(x)p(r) =0-p(r) =0 = ar € ker(yp).
Example 5. If a is an element in a commutative ring R with identity, the set
(a) ={ar|r € R}

is nonempty since both 0 = a0 and a = al are in (a). The sum of two elements in
(a) is again in (a) since ar + ar’ = a(r +1'). The inverse of ar is —ar = a(—r) € (a).
Finally, if we multiply an element ar € (a) by an arbitrary element s € R, we have
s(ar) = a(sr) € (a). Therefore, (a) satisfies the definition of an ideal. If R is a
commutative ring with identity, then an ideal of the form (a) is called a principal
ideal or principal ideal generated by a.

Proposition 6. In the ring Z, all ideals are principal. The ring Z s what is called
A principal ideal domain (PID).

Proof. The ideal {0} is clearly principal. If I C Z is a non-zero ideal, take smallest
positive number a € I. Any other element b € I will be expressed as

b=aq+r with rel with 0<r<a
By the way we have selected the a it most be r = 0 and I = (a). O
The importance of the concept of ideal is given by the following result.

Theorem 7. Let I be an ideal of R. The factor group R/I is a ring with multiplication
defined by

(r+0)(s+1I)=rs+1.



Proof. We already know that R/I is an abelian group under addition. Let r + I and
s+ I be two classes in R/I. We must show that the product (r+I)(s+ 1) =rs+1[
is independent of the choice of coset; that is, if we choose elements " and s" in r + [
and s+ [ respectively, then the product 7’s’ must be in rs+ 1. Since 1’ € r+ I, there
must be a € I such that ¥’ = r + a. In the same way, there must be b € I such that
s’ = s+ b. We calculate

r's'=(r+a)(s+b)=rs+as—+rb+ab

and the element as + rb + ab € I since I is an ideal; consequently, r's’ € rs + 1. We
still need to verify he associative law for multiplication and the distributive laws. [J

Definition 8. The ring R/I is called the factor or quotient ring of R by I.
Example 9. For R = Z and n € Z, the ideal (n) in R has quotient

R/(n) =7Z,.
In general, we have the isomorphism theorems from group theory:

Theorem 10. If ¢: R — S is a surjective ring homomorphism, then
R/ ker(p) = S.

Theorem 11. If I is an ideal in R and R’ is a subring, then R' N1 is an ideal in R’
and

R/(RNI)= (R +1)/I.
Theorem 12. If I C J C R are ideals in R, then

JJI=R/I/R/J.
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