
Lecture notes for Abstract Algebra I: Lecture 19

1 Rings homomorphisms and ideals

In the study of groups, a homomorphism is a map that preserves the operation of the
group. Similarly, a homomorphism between rings preserves the operations of addition
and multiplication in the ring. More specifically, if R and S are rings, then a ring
homomorphism is a map ϕ : R −→ S satisfying

ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(a · b) = ϕ(a) · ϕ(b)

for all a, b ∈ R. If ϕ : R −→ S is a one-to-one and onto homomorphism, then ϕ is
called an isomorphism of rings. The set of elements that a ring homomorphism
maps to 0 plays a fundamental role in the theory of rings. For any ring homomorphism
ϕ : R −→ S, we define the kernel of a ring homomorphism to be the set

kerϕ = {r ∈ R |ϕ(r) = 0}

Example 1. For any integer n we can define a ring homomorphism ϕ : Z −→ Zn by
a 7→ a( modn). This is indeed a ring homomorphism, since

ϕ(a + b) = (a + b)(modn)

= a(modn) + b(modn)

= ϕ(a) + ϕ(b)

and

ϕ(a · b) = (a · b)(modn)

= a(modn) · b(modn)

= ϕ(a) · ϕ(b)

The kernel of ϕ : Z −→ Zn is ker(ϕ) = nZ.

Proposition 2. Let ϕ : R −→ S be a ring homomorphism.

1. If R is a commutative ring, then ϕ(R) is a commutative ring.

2. ϕ(0) = 0.

3. Let 1R and 1S be the identities for R and S, respectively. If ϕ is onto, then
ϕ(1R) = 1S.

4. If R is a field and ϕ(R) 6= 0, then ϕ(R) is a field as well.
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In group theory we found that normal subgroups play a special role. These subgroups
have nice characteristics that make them more interesting to study than arbitrary
subgroups. In ring theory the objects corresponding to normal subgroups are a special
class of subrings called ideals.

Definition 3. An ideal in a ring R is a subring I of R such that if a is in I and r
is in R, then both ar and ra are in I; that is, rI ⊂ I and Ir ⊂ I for all r ∈ R.

I ideal⇔ r − s ∈ I ∀r, s ∈ I and ar, ra ∈ I ∀a ∈ I, r ∈ R.

Remark 4. Given a ring homomorphism ϕ : R −→ S, the kernel ker(ϕ) is an ideal
of R. We can check

(1) x, y ∈ ker(ϕ)⇒ ϕ(x), ϕ(y) = 0⇒ ϕ(x−y) = ϕ(x)−ϕ(y) = 0⇒ x−y ∈ ker(ϕ).

(2) x ∈ ker(ϕ), r ∈ R⇒ ϕ(rx) = ϕ(r)ϕ(x) = ϕ(r) · 0 = 0⇒ rx ∈ ker(ϕ).

(2) x ∈ ker(ϕ), r ∈ R⇒ ϕ(xr) = ϕ(x)ϕ(r) = 0 · ϕ(r) = 0⇒ xr ∈ ker(ϕ).

Example 5. If a is an element in a commutative ring R with identity, the set

〈a〉 = {ar | r ∈ R}

is nonempty since both 0 = a0 and a = a1 are in 〈a〉. The sum of two elements in
〈a〉 is again in 〈a〉 since ar + ar′ = a(r + r′). The inverse of ar is −ar = a(−r) ∈ 〈a〉.
Finally, if we multiply an element ar ∈ 〈a〉 by an arbitrary element s ∈ R, we have
s(ar) = a(sr) ∈ 〈a〉. Therefore, 〈a〉 satisfies the definition of an ideal. If R is a
commutative ring with identity, then an ideal of the form 〈a〉 is called a principal
ideal or principal ideal generated by a.

Proposition 6. In the ring Z, all ideals are principal. The ring Z is what is called
A principal ideal domain (PID).

Proof. The ideal {0} is clearly principal. If I ⊂ Z is a non-zero ideal, take smallest
positive number a ∈ I. Any other element b ∈ I will be expressed as

b = aq + r with r ∈ I with 0 ≤ r < a

By the way we have selected the a it most be r = 0 and I = 〈a〉.

The importance of the concept of ideal is given by the following result.

Theorem 7. Let I be an ideal of R. The factor group R/I is a ring with multiplication
defined by

(r + I)(s + I) = rs + I.
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Proof. We already know that R/I is an abelian group under addition. Let r + I and
s + I be two classes in R/I. We must show that the product (r + I)(s + I) = rs + I
is independent of the choice of coset; that is, if we choose elements r′ and s′ in r + I
and s+ I respectively, then the product r′s′ must be in rs+ I. Since r′ ∈ r+ I, there
must be a ∈ I such that r′ = r + a. In the same way, there must be b ∈ I such that
s′ = s + b. We calculate

r′s′ = (r + a)(s + b) = rs + as + rb + ab

and the element as + rb + ab ∈ I since I is an ideal; consequently, r′s′ ∈ rs + I. We
still need to verify he associative law for multiplication and the distributive laws.

Definition 8. The ring R/I is called the factor or quotient ring of R by I.

Example 9. For R = Z and n ∈ Z, the ideal 〈n〉 in R has quotient

R/〈n〉 = Zn.

In general, we have the isomorphism theorems from group theory:

Theorem 10. If ϕ : R −→ S is a surjective ring homomorphism, then

R/ ker(ϕ) ∼= S.

Theorem 11. If I is an ideal in R and R′ is a subring, then R′ ∩ I is an ideal in R′

and
R′/(R′ ∩ I) ∼= (R′ + I)/I.

Theorem 12. If I ⊂ J ⊂ R are ideals in R, then

J/I ∼= R/I /R/J.
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